
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Outline Bug

QThere is a problem with the
TOutline component in

Delphi 1 and 2. Place an outline on
a form and use its Lines property to
add one line to it. Run the program
and either double click the line, or
press the plus key, which normally
expands an expandable node. Ob-
viously it will have no effect here.
Now press the End key, which usu-
ally takes you to the last item at the
current hierarchy level. You get a
List index out of bounds exception.

AThis bug seems fairly easy to
fix in the VCL source code. It

is caused by the KeyDown method of
TCustomOutline not checking if an
expanded node actually has child
nodes. It just moves to the last
child node and if there are no
children then the last will return
something that is indeed “out of
bounds.”

In TCustomOutline.KeyDown, in
OUTLINE.PAS, you need to change
the code for the VK_END case to be
as shown in Listing 1.

Back To Front Math Unit

QThe new MinValue and
MaxValue routines in the

Math unit don’t work. The follow-
ing line gives 0.7 as the maximum
passed value:

ShowMessage(FloatToStr(
 MaxValue([5, 3, 7, 9.2,
 0.7, 8])));

AThis problem has been
spotted and reported. The

implementations of both MinValue
and MaxValue use the wrong
comparison operator. If you have
the source, you can fix it, otherwise
you will need to use what would

appear to be the wrong routine to
get the right effect. This will
presumably be remedied in a main-
tenance release, so be prepared to
change them back to the right way
round.

Autosizing TDBGrid

QHow can I get a DBGrid to set
its own width so as to have

no white space past its rightmost
column?

ATo do this requires identify-
ing the width of all the col-

umns in the grid, the width of the
scroll bar and the width of the bor-
ders, if there are any. Of course, if
this turns out to be wider than the
form, then it will need to be trun-
cated somewhat. The column
widths are available inside the
TDBGrid itself, but are not surfaced
as public properties. The following
extract from a simple TDBGrid de-
rivative (found in OPTGRIDU.PAS)
shows the implementation of a
property called OptWidth that can
be used to find the best value. The
GRIDFIT.DPR project on the disk
shows how to use it.

The project allows any query to
be typed in and executed and the
query’s AfterOpen event handler
sets the grid’s width to the OptWidth
value. One point worth mentioning
is that the query is opened in the
OnCreate handler. To ensure that
this property works at this early

stage in the program’s lifetime, I
send a wm_Paint message to the
grid’s window procedure (not by
using Windows calls, but by using
the Delphi Perform method). This
forces it to calculate its initial col-
umn widths. In Delphi 1, this is
needed since, at that point, all col-
umns in the grid are considered to
be all the size of the default column
width. See Listing 2.

No New Record In A TDBGrid

QOn a TDBGrid, how can I stop
the user opening up a blank

record when they press Tab or the
down arrow on the last field of the
last record?

AMy proposed solution in-
volves setting the form’s

KeyPreview property to True and
writing an OnKeyDown handler for it
as shown in Listing 3.

If the down arrow key is pressed,
the keypress is let through if the
dataset is not on the last record. If
the Tab key is pressed on the last
tab stop, then again a check is
made on the state of the dataset
before letting the key though.
GRIDS.DPR shows this in action.

Reading Form Properties

QI need to read a form’s prop-
erties from a program not

written in Delphi. The form file for-
mat is not clear and so I am having

VK_END:
 begin
 Node := TOutlineNode(FRootNode.List.Last);
 while Node.Expanded { add this } and (Node.List.Count > 0)
 { end of new bit } do
 Node := TOutlineNode(Node.List.Last);
 SelectedItem := Node.Index;
 Exit;
 end;

➤ Listing 1

June 1996 The Delphi Magazine 55

trouble. How can I get access to the
property data? I have no problems
with launching a small Delphi pro-
gram that generates a text file, but
don’t know how.

AYou didn’t specify whether
you meant from a form file,

or a form resource bound into an
executable. So we’ll do both.

When a form is created at run-
time in a Delphi application, the
form resource is read in and the
property values are read in. There
is code in the VCL to do this. When
you open a form file in the Delphi
editor, or use the command line
CONVERT.EXE tool, you can trans-
late between a form file and a text
file. This facility is also in the VCL.
The important routines are
ObjectTextToBinary, ObjectBinary-
ToText, ObjectResourceToText and
ObjectTextToResource, all of which
take an input stream and an output
stream. On the disk is a project
called READFRM.DPR which shows
how to generate a text file from a
form file (ObjectResourceToText)
and also from a form resource
(ObjectBinaryToText). The program
is shown in Figure 1.

If compiled in Delphi 1, the code
uses a THandleStream. In Delphi 2, it
uses the new TResourceStream. The
two routines from the form unit
REDFRMU are shown in Listing 4.

Optimising
TPaintBox Painting

QI am drawing on the Canvas of
a TPaintBox. Under certain

circumstances, for efficiency, I
want to clear and then repaint only
a part of the canvas (like
InvalidateRect in the Windows API,
but that doesn’t work since the
paint box hasn’t got a window
handle). In other words I want the
Canvas.ClipRect to be smaller than
the visible area of the PaintBox.
How do I do that?

AYou are correct in saying
that TPaintBox, for example

TSpeedButton and TImage among
others, does not have a window
handle available through a Handle
property. This is because it is not a
TWinControl descendant. However,

those clever people at Borland
allow all these components to
manage themselves by acting as
though they have a window handle.
Likewise, TGraphicControl descen-
dants (such as TPaintBox) don’t
have real canvases (or device
contexts, as API programmers re-
fer to them). They get to use a por-
tion of their TWinControl owners’
canvas.

All TControl descendants have a
window procedure method,
WndProc, which despatches mes-
sages to message handlers. All this
leads up to the fact that a TPaintBox
has a wm_Paint message handler
that can be overridden to do what-
ever optimised painting you like.

The wm_Paint message is passed
with a device context handle. We
can make a new clipping region by

function TDBOptGrid.GetOptWidth: Integer;
var Loop: Integer;
begin
 Result := GetSystemMetrics(sm_CXVScroll); { Vertical scroll bar }
 { Left and right borders }
 if BorderStyle = bsSingle then
 Inc(Result, 2 * GetSystemMetrics(sm_CXBorder));
 { Each column, possibly including the indicator }
 for Loop := 0 to Pred(ColCount) do
 Inc(Result, Succ(ColWidths[Loop]));
 { Make sure it fits in parent }
 if Parent is TForm then begin
 if Result > TForm(Parent).ClientWidth then
 Result := TForm(Parent).ClientWidth;
 end else
 if Result > Parent.Width then
 Result := Parent.Width;
end;

➤ Listing 2

{$B-}
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
 Shift: TShiftState);
 { Tabs are fine until we are at the last cell. Are we at the last tab stop? }
 function AtLastTabStop(G: TDBGrid): Boolean;
 var Loop: Word;
 begin
 Result := True;
 with G do begin
 if SelectedIndex = Pred(FieldCount) then
 Exit;
 for Loop := Succ(SelectedIndex) to Pred(FieldCount) do begin
 Result := Fields[Loop].ReadOnly;
 if not Result then
 Exit;
 end;
 end;
 end;

 procedure NextRecord(var Key: Word; DataSet: TDataSet);
 begin
 Key := 0;
 if not DataSet.EOF then
 DataSet.Next;
 end;

begin
 if (ActiveControl is TDBGrid) and
 (TDBGrid(ActiveControl).DataSource <> nil) then
 case Key of
 vk_Tab: if not (ssShift in Shift) then
 with TDBGrid(ActiveControl).DataSource, DataSet do
 if AtLastTabStop(TDBGrid(ActiveControl)) then begin
 NextRecord(Key, DataSet);
 if not EOF then
 TDBGrid(ActiveControl).SelectedIndex := 0;
 end;
 vk_Down: if not (ssCtrl in Shift) then
 with TDBGrid(ActiveControl).DataSource, DataSet do
 NextRecord(Key, DataSet);
 else Exit;
 end;
end;

➤ Listing 3

56 The Delphi Magazine Issue 10

modifying the given canvas, using
the IntersectClipRect API. If we
make a new component (Listing 5),
we can add a read/write ClipRect
property which can be used in the
wm_Paint handler to achieve our
goal.

There’s an example project on
the disk called PBOX.DPR that sets
up ClipRect to be the right half of
the paint box. It then draws two
lines across the paint box, but of
course only the right half of the
lines show up.

Restricting Property Access

QI wish to change the access
specification of a property

from published to private so that I
can set default properties of a de-
rived control and ensure that these
defaults do not get changed, how
do I do this?

AYou don’t. You cannot make
a given element of an object

more restrictive in a descendent –
it’s effectively taking things away,
and that is not allowed. However,
you can define a new property of
the same name (a dummy prop-
erty), which is read-only. If it is
made published then it hides the
old one from the Object Inspector.
To access the original property in
your new component, use the
inherited keyword. Listing 6 shows
an example which allows users of a
button descendant to program-
matically read the ModalResult
property value, but not set it.

General Help Page

QI don’t want to provide
context-sensitive in my ap-

plication, however I do want the F1
key to jump to one help page, no
matter where it is pressed in my
program. Noticing that the
HelpContext property of all compo-
nents is zero, I tried adding a page
in my help file with a context num-
ber of zero and then associating
the help file with my project. This
had no effect.

AUnfortunately, the help file is
not invoked if the help con-

text of the focused component is

➤ Figure 1

procedure TFormReader.Button1Click(Sender: TObject);
var
 InStream, OutStream: TFileStream;
begin
 InStream := TFileStream.Create(FormFile, fmOpenRead);
 try
 OutStream := TFileStream.Create(TextFile, fmCreate);
 try
 { Translate a form file to a text file }
 ObjectResourceToText(InStream, OutStream);
 finally
 OutStream.Free;
 end;
 finally
 InStream.Free;
 end;
 FormDescription.Lines.LoadFromFile(TextFile);
end;

procedure TFormReader.Button2Click(Sender: TObject);
var
 InStream: {$ifdef VER80}THandleStream{$else}
 TResourceStream{$endif};
 OutStream: TFileStream;
begin
{$ifdef VER80}
 InStream := THandleStream.Create(AccessResource(HInstance,
 FindResource(HInstance, ’TFormReader’, rt_RCData)));
{$else}
 InStream := TResourceStream.Create(HInstance, ’TFormReader’, rt_RCData);
{$endif}
 try
{$ifdef VER80}
 if InStream.Handle = 0 then
 raise EResNotFound.CreateResFmt(SResNotFound, [ClassName]);
{$endif}
 try
 OutStream := TFileStream.Create(TextFile, fmCreate);
 try
 { Translate an exe-based resource to a text file }
 ObjectBinaryToText(InStream, OutStream);
 finally
 OutStream.Free;
 end;
 finally
 InStream.Free;
 end;
 finally
 FileClose(Handle);
 end;
 FormDescription.Lines.LoadFromFile(TextFile);
end;

➤ Listing 4

June 1996 The Delphi Magazine 57

zero. The steps you need to follow
are:

1. Decide which items need con-
text-sensitive help, ie which things,
when focused on, can have F1
pressed to get help. All the poten-
tial items (components which can
take the focus) have a HelpContext
property.

2. Give each such component a
consistent, unique help context
(HelpContext property), for exam-
ple 100, and add a help page to your
help file with the same context
number.

3. Associate your help file with
the program using Options |
Project | Application | Help file.

Hiding Tabs

QI need to display a varying
number of pages of a

TTabbedNotebook to reflect different
types of record in a database. How
do I hide specified pages and re-
store them at will?

ADepending on your prefer-
ences, you may want to hide

the tab or just disable it, so we’ll
need two solutions. One to remove
the page (TTabPage class) from the
TTabbedNotebook (but being pre-
pared to put it back later), one to
disable the tab (which is imple-
mented as a TButton derivative in
the TABNOTBK unit so we can’t see
its name).

A TTabbedNotebook’s page objects
are kept as the objects in its
TStrings Pages property. There is a
help topic that appears to state the
contrary of this (Help | Topic
Search, string lists, Adding
Objects to a String List): “...the
pages in a notebook cannot have
associated objects”. What this is
saying is that you can’t put your
own arbitrary objects in the list,
because there are already page ob-
jects there. One thought for solving
the problem would be to say:

TabbedNotebook1.Pages.Delete(
 HiddenPageNumber);
...
TabbedNotebook1.Pages.Insert(
 HiddenPageNumber);

and this will indeed remove and

restore the page, but since all the
components on a given page are
children of the page itself, they will
all be deleted along with the page.
To avoid this we might try assign-
ing the page object to a temporary
page object and writing nil in its
place in the Pages.Objects prop-
erty, so the object doesn’t get de-
leted. This also fails because
writing to Pages.Objects has no ef-
fect (if you have the VCL source,
see TStrings.PutObject’s imple-
mentation in CLASSES.PAS – it’s
empty. The Pages TStrings de-
scendent doesn’t override it). The
best I can manage is to iterate
through all the controls on the
page and make them children of
another object – a surrogate page
object or foster parent. Then when
the page is deleted there are no
children to delete. When restoring
the page we need to do the reverse
and iterate through the spare

page’s controls and add them back
to the new page that’s made when
re-inserting.

Some code that does this for one
page at a time and also caters for
other problems that are encoun-
tered along the way is shown in
Listing 7. This can also be seen in
action by running the MPD.DPR
project on this month’s disk. This
project also demonstrates a similar
routine that has had various modi-
fications to work with TNotebook
and TTabset combos.

Now let’s turn to disabling a
page. A TTabbedNotebook is a compo-
nent that has page components
(TWinControl descendants) and
tabs (TGraphicControl descendants
in Delphi 1). Since TGraphicControls
have an Enabled property, we can
disable the appropriate tab. We
also need to prevent the tab’s key-
board support selecting the dis-
abled tab and this is done in the

unit NewPBox;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls;
type
 TNewPaintBox = class(TPaintBox)
 private
 FClipRect: TRect;
 protected
 procedure WMPaint(var Msg: TWMPaint); message wm_Paint;
 public
 property ClipRect: TRect read FClipRect write FClipRect;
 end;
procedure Register;

implementation
procedure TNewPaintBox.WMPaint(var Msg: TWMPaint);
begin
 with FClipRect do
 IntersectClipRect(Msg.DC, Left, Top, Width, Height);
 inherited;
end;

procedure Register;
begin
 RegisterComponents(’Samples’, [TNewPaintBox]);
end;
end.

➤ Listing 5

type
 TProtectAProperty = class(TButton)
 protected
 function GetModalResult: Integer;
 public
 property ModalResult: Integer read GetModalResult;
 end;

function TProtectAProperty.Get ModalResult: Integer;
begin
 Result := inherited ModalResult;
end;

➤ Listing 6

58 The Delphi Magazine Issue 10

tabbed notebook’s OnChange han-
dler. Credit for this technique goes
to Roy Nelson at Borland. Unfortu-
nately for 16-colour display users,
the colour used by the tabs’ text
when disabled matches that of the
tab itself so the text disappears.
Code to disable/enable a page,
taken from the MPD2.DPR project
on the disk, is shown in Listing 8,
where PresentChk is a checkbox.

In Delphi 2 a TTabbedNotebook is
implemented by a TTabControl
which does not support individual
page disabling. If we instead use a
TPageControl things are rather
easier. A TPageControl has a Pages
property which is an array of
TTabSheet controls, each of which
has an Enabled property.

To cater for Delphi 1 and 2
(which require different controls
to be used for page disabling) I
have two different forms and form
units (MPD2U2A and MPD2U2B)
which are conditionally compiled
in dependent on platform. Unfortu-
nately Win32 does not provide
enough information to stop a
disabled tab being selected (there
is an OnChanging event but you
don’t get told which tab might get
selected).

Disabling a page in a note-
book/tabset combo involves much
the same concept, although finding
the target tab is, of course, much
easier. To grey the tab text, you can
make the tabset owner-draw and
use a different font colour.

Acknowledgements
Thanks to Roy Nelson for the code
for tab manipulation. Also to Bob
Swart for the outline bug, and for
passing along a message from Ron
Johnson regarding the Math unit
bug.

Errata
It has been pointed out that the
implementation of the Power rou-
tine in Issue 7 left a little to be
desired – there were one or two
special cases that weren’t catered
for. Another copy of the PowTest
project and the PowerU unit
appear on this issue’s disk.

procedure TForm1.HidePage(Notebook: TTabbedNotebook; PageNum: Word;
 Hide: Boolean);
const Proxy: TTabPage = nil;
 ProxyName: String = ’’;
var Page: TTabPage;
begin
 if Hide then begin
 { Can’t assign new value to Pages.Objects[i] as it’s
 implemented as the base TStrings no-op, meaning the real page will be
 deleted, losing child controls. Also, Assign is not implemented. Make
 surrogate parent window instead. }
 Proxy := TTabPage.Create(Self);
 { Save page name }
 ProxyName := Notebook.Pages[PageNum];
 Page := Notebook.Pages.Objects[PageNum] as TTabPage;
 { Transfer all page children to foster parent }
 while Page.ControlCount > 0 do
 Page.Controls[0].Parent := Proxy;
 { Delete target page }
 Notebook.Pages.Delete(PageNum);
 end else begin
 { Stop bad flicker as page is inserted }
 Notebook.Hide;
 { Can’t use InsertObject - doesn’t work }
 { Use Insert, which makes the TTabPage object }
 Notebook.Pages.Insert(PageNum, ProxyName);
 { Avoid tab-button refocus problem (caused by page being inserted where
 PageIndex is currently set) by moving PageIndex one left, then moving
 one right (catering for already being at the beginning - the right
 hand side of the addition resolves to 1) }
 Notebook.PageIndex := Notebook.PageIndex + (Byte(PageNum = 0) * 2) - 1;
 Notebook.PageIndex := Notebook.PageIndex + (Byte(PageNum > 0) * 2) - 1;
 Page := Notebook.Pages.Objects[PageNum] as TTabPage;
 { Move children back to natural parent }
 while Proxy.ControlCount > 0 do
 Proxy.Controls[0].Parent := Page;
 { Destroy foster parent }
 Proxy.Free;
 Notebook.Show;
 end;
end;

➤ Above: Listing 7 ➤ Below: Listing 8

procedure TForm1.PresentChkClick(Sender: TObject);
var
 Loop: Integer;
 Tab : TControl;
begin
 PagesGrp.Enabled := PresentChk.Checked;
{$ifdef Windows}
 { Delphi 1.0x }
 { A TTabbedNotebook has pages (TWinControls) and tabs (TGraphicControls) }
 for Loop := 0 to Pred(Form2.Notebook.ControlCount) do begin
 Tab := Form2.Notebook.Controls[Loop] as TControl;
 if (Tab is TGraphicControl) and
 { Apparently dangerous typecast is actually safe. Caption is in
 every TControl, just protected. It is published in a TButton, and
 so is accessible }
 (TButton(Tab).Caption = PagesGrp.Items[PagesGrp.ItemIndex]) then
 begin
 Tab.Enabled := PresentChk.Checked;
 Break;
 end;
 end;
{$else}
 Form2.NoteBook.Pages[PagesGrp.ItemIndex].Enabled := PresentChk.Checked;
{$endif}
end;

60 The Delphi Magazine Issue 10

	Outline Bug
	Back To Front Math Unit
	Autosizing TDBGrid
	No New Record In A TDBGrid
	Reading Form Properties
	Optimising TPaintBox Painting
	Restricting Property Access
	General Help Page
	Hiding Tabs
	Acknowledgements
	Errata

